Add like
Add dislike
Add to saved papers

Molecular dynamics simulations of the catalytic subunit of Calpains 1, 2, 5 and 10: structural analysis with an aim towards drug design.

Calpains are cysteine proteases involved in the development of several human chronic illnesses such as neurodegenerative diseases, cardiovascular ailments, diabetes and obesity which constitutes them into possible therapeutic targets. Here, using molecular dynamic simulations and docking, we studied the binding of known inhibitors to representative members of classical and non-classical calpains. Our aim is to gain better understanding on the inhibition mechanism of calpains and to develop better and more specific inhibitors. Our atomistic models confirmed the importance of calcium ions for the structure of calpains and, as a consequence, their functionality. With these models and their subsequent use in molecular docking, essential structural requirements were identified for the binding of ligands to the calpain catalytic site that provide useful information for the design of new selective calpain inhibitors. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app