Add like
Add dislike
Add to saved papers

Chaotic Sensing.

We propose a sparse imaging methodology called Chaotic Sensing (ChaoS) that enables the use of limited yet deterministic linear measurements through fractal sampling. A novel fractal in the discrete Fourier transform is introduced that always results in the artefacts being turbulent in nature. These chaotic artefacts have characteristics that are image independent, facilitating their removal through dampening (via image denoising) and obtaining the maximum likelihood solution. In contrast with existing methods, such as compressed sensing, the fractal sampling is based on digital periodic lines that form the basis of discrete projected views of the image without requiring additional transform domains. This allows the creation of finite iterative reconstruction schemes in recovering an image from its fractal sampling that is also new to discrete tomography. As a result, ChaoS supports linear measurement and optimisation strategies, while remaining capable of recovering a theoretically exact representation of the image. We apply the method to simulated and experimental limited magnetic resonance (MR) imaging data, where restrictions imposed by MR physics typically favour linear measurements for reducing acquisition time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app