Add like
Add dislike
Add to saved papers

Optimizing a Parameterized Plug-and-Play ADMM for Iterative Low-Dose CT Reconstruction.

Reducing the exposure to X-ray radiation while maintaining a clinically acceptable image quality is desirable in various CT applications. To realize low-dose CT (LdCT) imaging, model-based iterative reconstruction (MBIR) algorithms are widely adopted, but they require proper prior knowledge assumptions in the sinogram and/or image domains and involve tedious manual optimization of multiple parameters. In this work, we propose a deep learning (DL)-based strategy for MBIR to simultaneously address prior knowledge design and MBIR parameter selection in one optimization framework. Specifically, a parameterized plug-and-play alternating direction method of multipliers (3pADMM) is proposed for the general penalized weighted least-squares (PWLS) model, and then, by adopting the basic idea of DL, the parameterized plug-and-play (3p) prior and the related parameters are optimized simultaneously in a single framework using a large number of training data. The main contribution of this work is that the 3p prior and the related parameters in the proposed 3pADMM framework can be supervised and optimized simultaneously to achieve robust LdCT reconstruction performance. Experimental results obtained on clinical patient datasets demonstrate that the proposed method can achieve promising gains over existing algorithms for LdCT image reconstruction in terms of noise-induced artifact suppression and edge detail preservation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app