Add like
Add dislike
Add to saved papers

Graphene Quantum Dots Based Systems As HIV Inhibitors.

Bioconjugate Chemistry 2018 September 20
Graphene quantum dots (GQD) are the next generation of nanomaterials with great potential in drug delivery and target-specific HIV inhibition. In this study we investigated the antiviral activity of graphene based nanomaterials by using water-soluble GQD synthesized from multiwalled carbon nanotubes (MWCNT) through prolonged acidic oxidation and exfoliation and compared their anti-HIV activity with that exerted by reverse transcriptase inhibitors (RTI) conjugated with the same nanomaterial. The antiretroviral agents chosen in this study, CHI499 and CDF119, belong to the class of non-nucleoside reverse transcriptase inhibitors (NNRTI). From this study emerged the RTI-conjugated compound GQD-CHI499 as a good potential candidate for HIV treatment, showing an IC50 of 0.09 μg/mL and an EC50 value in cell of 0.066 μg/mL. The target of action in the replicative cycle of HIV of the drug conjugated samples GQD-CHI499 and GQD-CDF119 was also investigated by a time of addition (TOA) method, showing for both conjugated samples a mechanism of action similar to that exerted by NNRTI drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app