Add like
Add dislike
Add to saved papers

Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts.

ChemSusChem 2018 August 15
The sustainable conversion of vegetable biomass-derived feeds to useful chemicals requires innovative routes meeting environmental and economical criteria. The approach herein pursued is the synthesis of water-tolerant, unconventional solid acid monolithic catalysts based on a mixed niobia-titania skeleton building up a hierarchical open-cell network of meso- and macropores, and tailored for use under continuous-flow conditions. The materials were characterized by spectroscopic, microscopy, and diffraction techniques, showing a reproducible isotropic structure and an increasing Lewis/Brønsted acid sites ratio with increasing Nb content. The catalytic dehydration reaction of xylose to furfural was investigated as a representative application. The efficiency of the catalyst was found to be dramatically affected by the niobia content in the titania lattice. The presence of as low as 2 wt % niobium resulted in the highest furfural yield at 140 °C under continuous-flow conditions, by using H2 O/γ-valerolactone as a safe monophasic solvent system. The interception of a transient 2,5-anhydroxylose species suggested the dehydration process occurs via a cyclic intermediates mechanism. The catalytic activity and the formation of the anhydro intermediate were related to the Lewis acid sites (LAS)/Brønsted acid sites (BAS) ratio and indicated a significant contribution of xylose-xylulose isomerization. No significant catalyst deactivation was observed over 4 days usage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app