Add like
Add dislike
Add to saved papers

Translating Catalysis to Chemiresistive Sensing.

Activating molecules or functional groups with high chemoselectivity in complex environments is the central goal of transition-metal-based catalysis. Promoting strong interactions between a selected substrate and a catalytic system can also be used to create highly selective and customizable sensors, and these concepts are widely recognized for enzymatic processes. We demonstrate the successful translation of organometallic reactions to sensing capability. Specifically, we have developed single-walled carbon nanotube (SWCNT) chemiresistive sensors for the highly selective detection of acrylates using conditions for the aerobic oxidative Heck reaction. The sensors mirror the catalytic processes and selectively respond to electron-deficient alkenes by adapting a catalytic reaction system to modulate the doping levels in carbon nanotubes. The sensors readily detect acrylates at parts per million (ppm) levels in untreated air. The concepts presented here are generally applicable and can guide future sensor development based upon known catalytic processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app