Add like
Add dislike
Add to saved papers

Bifidobacterium animalis ssp. lactis Bb12 induces IL-10 through cell membrane-associated components via TLR2 in swine.

AIM: To investigate the role of Toll-like receptor 2 (TLR2) in interleukin-10 (IL-10) production induced by Bifidobacterium animalis ssp. lactis Bb12 (Bb12) in swine immune cells.

METHODS AND RESULTS: Blood-monocytes and cells from mesenteric lymph nodes were obtained from pigs and cultured with live Bb12 for 4 and 12 h. Transcript levels of IL-10 and TLR2 were analyzed. Furthermore, TLR2 was blocked to determine its participation in IL-10 production. TLR2 blockade was achieved with neutralizing antibodies, followed by stimulation with Bb12. Bifidobacteria induced IL-10 production in both swine monocytes and mesenteric cells. Monocytes with TLR2 blockade had a decrease in IL-10 transcripts, while mesenteric cells did not. Bacterial cell wall components were responsible for Bb12-induced IL-10 production since no IL-10 was detected in the culture supernatant.

CONCLUSIONS: We demonstrated that IL-10 production is largely mediated through the recognition of Bb12 structures by TLR2, as bacterial metabolites in the culture supernatant failed to induce IL-10 expression.

SIGNIFICANCE AND IMPACT OF THE STUDY: The present study provides evidence for the potential use of Bb12 in the swine industry; these bacteria can also be used as additional method to treat intestinal inflammation and enhance intestinal health in pigs. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app