Add like
Add dislike
Add to saved papers

Overexpression of KLF5 inhibits puromycin‑induced apoptosis of podocytes.

Diabetic nephropathy (DN) is one of the most common microvascular complications associated with diabetes mellitus (DM); the incidence has been predicted to reach 7.7% by 2030 on a global scale. Krüppel‑like factor 5 (KLF5) is involved in numerous important biological processes; however, the potential effects of KLF5 on podocytes in patients with diabetic nephrotic (DN) have not yet been investigated. In the present study, synaptopodin expression in podocytes was investigated using an immunofluorescence assay. Following this, the proliferation of podocytes was investigated using an MTT assay. In addition, KLF5 was overexpressed in podocytes, and cell cycle arrest and apoptosis was subsequently investigated using flow cytometry. Western blotting and reverse transcription‑quantitative polymerase chain reaction assays were performed to detect the expression levels of genes involved in the cell cycle and apoptosis, and the extracellular signal‑regulated protein kinase (ERK)/p38 mitogen‑activated protein (MAP) kinase pathway. The results demonstrated that treatment with puromycin aminonucleoside (PAN) suppressed the proliferation of podocytes in a dose‑ and time‑dependent manner, and overexpression of KLF5 induced cell cycle arrest of podocytes regulated by PAN. Furthermore, overexpression of KLF5 was revealed to have inhibited PAN‑induced apoptosis of podocytes, and that overexpression of KLF5 suppressed the ERK/p38 MAP kinase pathway in podocytes induced by PAN. Therefore, the results of the present study suggested that KLF5 may represent a potential therapeutic target for treatment of patients with DN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app