Add like
Add dislike
Add to saved papers

MicroRNA‑214 suppresses propofol‑induced neuroapoptosis through activation of phosphoinositide 3‑kinase/protein kinase B signaling by targeting phosphatase and tensin homolog expression.

The present study aimed to investigate the effects of microRNA (miR)‑214 on neuroapoptosis induced by propofol and the possible mechanism of its anti‑apoptotic effects. Initially, it was observed that miR‑214 expression was upregulated in propofol‑induced neuroapoptosis rats. Next, propofol‑treated nerve cells were transfected with miR‑214 mimics. The results revealed that miR‑214 overexpression induced apoptosis, inhibited cell proliferation, inhibited cyclin D1 protein expression, promoted caspase‑3 activity and B‑cell lymphoma 2‑associated X protein expression, and enhanced the levels of inflammation factors in nerve cells treated with propofol. In addition, miR‑214 overexpression suppressed phosphoinositide 3‑kinase/protein kinase B (PI3K/Akt) signaling by targeting the activation of phosphatase and tensin homolog (PTEN) and nuclear factor‑κB expression in nerve cells treated with propofol. Treatment with a PTEN inhibitor successfully suppressed the PTEN protein expression and decreased the apoptosis of propofol‑treated nerve cells subsequent to miR‑214 overexpression through PI3K/Akt signaling. In conclusion, the present study data revealed that miR‑214 suppressed propofol‑induced neuroapoptosis through the activation of PI3K/Akt signaling by targeting PTEN expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app