Add like
Add dislike
Add to saved papers

Luminescent, low-toxic and stable gradient-alloyed Fe:ZnSe(S)@ZnSe(S) core:shell quantum dots as a sensitive fluorescent sensor for lead ions.

Nanotechnology 2018 November 3
In this paper, an aqueous-based approach is introduced for facile, fast, and green synthesis of gradient-alloyed Fe-doped ZnSe(S)@ZnSe(S) core:shell quantum dots (QDs) with intense and stable emission. Co-utilization of co-nucleation and growth doping strategies, along with systematic optimization of emission intensity, provide a well-controllable/general method to achieve internally doped QDs (d-dots) with intense emission. Results indicate that the alloyed ZnSe(S)@ZnSe(S) core:shell QDs have a gradient structure that consists of a Se-rich core and a S-rich shell. This gradient structure cannot only passivate the core d-dots by means of the wider band gap S-rich shell, but also minimizes the lattice mismatch between alloyed core-shell structures. Using this novel strategy and utilizing the wider band gap S-rich shell can obviously increase the cyan emission intensity and also drastically improve the emission stability against chemical and optical corrosion. Furthermore, the cytotoxicity experiments indicate that the obtained d-dots are nontoxic nanomaterials, and thus they can be considered as a promising alternative to conventional Cd-based QDs for fluorescent probes in biological fields. Finally, it is demonstrated that the present low-toxicity and gradient-alloyed core:shell d-dots can be used as sensitive chemical detectors for Pb2+ ions with excellent selectivity, small detection limit, and rapid response time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app