Add like
Add dislike
Add to saved papers

Developing an efficient phase-matched attenuation correction method for quiescent period PET in abdominal PET/MRI.

Respiratory motion causes misalignments between positron emission tomography (PET) and magnetic resonance (MR)-derived attenuation maps (µ-maps) in addition to artifacts on both PET and MR images in simultaneous PET/MRI for organs such as liver that can experience motion of several centimeters. To address this problem, we developed an efficient MR-based attenuation correction (MRAC) method to generate phase-matched µ-maps for quiescent period PET (PETQ ) in abdominal PET/MRI. MRAC data was acquired with CIRcular Cartesian UnderSampling (CIRCUS) sampling during 100 s in free-breathing as an accelerated data acquisition strategy for phase-matched MRAC (MRACPM-CIRCUS ). For comparison, MRAC data with raster (Default) k-space sampling was also acquired during 100 s in free-breathing (MRACPM-Default ), and used to evaluate MRACPM-CIRCUS as well as un-matched MRAC (MRACUM ) that was un-gated. We purposefully oversampled the MRACPM data to ensure we had enough information to capture all respiratory phases to make this comparison as robust as possible. The proposed MRACPM-CIRCUS was evaluated in 17 patients with 68 Ga-DOTA-TOC PET/MRI exams, suspected of having neuroendocrine tumors or liver metastases. Effects of CIRCUS sampling for accelerating a data acquisition were evaluated by simulating the data acquisition time retrospectively in increments of 5 s. Effects of MRACPM-CIRCUS on PETQ were evaluated using uptake differences in the liver lesions (n  =  35), compared to PETQ with MRACPM-Default and MRACUM . A Wilcoxon signed-rank test was performed to compare lesion uptakes between the MRAC methods. MRACPM-CIRCUS showed higher image quality compared to MRACPM-Default for the same acquisition times, demonstrating that a data acquisition time of 30 s was reasonable to achieve phase-matched µ-maps. Lesion update differences between MRACPM-CIRCUS (30 s) versus MRACPM-Default (reference, 100 s) were 0.1%  ±  1.4% (range of  -2.7% to 3.2%) and not significant (P  >  .05); while, the differences between MRACUM versus MRACPM-Default were 0.6%  ±  11.4% with a large variation (range of  -37% to 20%) and significant (P  <  .05). In conclusion, we demonstrated that a data acquisition of 30 s achieved phase-matched µ-maps when using specialized CIRCUS data sampling and phase-matched µ-maps improved PETQ quantification significantly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app