Add like
Add dislike
Add to saved papers

Manipulating Behaviors from Heavy Tungsten Doping on Interband Electronic Transition and Orbital Structure Variation of Vanadium Dioxide Films.

Vanadium dioxide (VO2 ) with a metal-insulator transition (MIT) has been supposed as a candidate for optoelectronic devices. However, the MIT temperature ( TMIT ) above room temperature limits its application scope. Here, high-quality V1- x W x O2 films have been prepared by pulsed laser deposition. On the basis of temperature-dependent transmittance and Raman spectra, it was found that TMIT increases from 241 to 279 K, when increasing the doping concentration in the range of 0.16 ≤ x ≤ 0.20. The interband electronic transitions and orbital structures of V1- x W x O2 films have been investigated via fitting transmittance spectra. Moreover, with the aid of first-principles calculations, an effective orbital theory has been proposed to explain the unique phenomenon. When the W doping concentration increases, the π* and dII orbitals shift toward the π orbital. Meanwhile, the energy gap between the π* and dII orbitals decreases at the insulator state. It indicates that the bandwidth is narrowed, which impedes MIT. In addition, the overlap of the π* and dII orbitals increases at the metal state, and more doping electrons occupy the π* orbital induced by increasing W doping concentration. It manifests that the Mott insulating state becomes more stable, which further improves TMIT . The present work provides a feasible approach to tune TMIT via orbital variation and can be helpful in developing the potential VO2 -based optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app