JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Dietary fats modify vascular fat composition, eNOS localization within lipid rafts and vascular function in obesity.

We tested whether dietary fatty acids alter membrane composition shifting localization of signaling pathways within caveolae to determine their role in vascular function. Wild type (WT) and caveolin-1-deficient mice (cav-1 KO), required for vascular caveolae formation, were fed low fat (LF), high saturated fat (HF, 60% kcal from lard), or high-fat diet with 50:50 lard and n-3 polyunsaturated fatty acid-enriched menhaden oil (MO). HF and MO increased body weight and fat in WT but had less effect in cav-1 KO. MO increased unsaturated fatty acids and the unsaturation index of aorta from WT and cav-1 KO. In LF WT aorta, endothelial nitric oxide synthase (eNOS) was localized to cav-1-enriched low-density fractions which shifted to actin-enriched high-density fractions with acetylcholine (ACh). HF and MO shifted eNOS to high-density fractions in WT aorta which was not affected by ACh. In cav-1 KO aorta, eNOS was localized in low-density non-caveolar fractions but not shifted by ACh or diet. Inducible NOS and cyclooxygenase 1/2 were not localized in low-density fractions or affected by diet, ACh or genotype. ACh-induced dilation of gracilis arteries from HF WT was similar to dilation in LF but the NOS component was reduced. In WT and cav-1 KO, dilation to ACh was enhanced by MO through increased role for NOS and cyclooxygenase. We conclude that dietary fats affect vascular fatty acid composition and membrane localization of eNOS but the contribution of eNOS and cyclooxygenase in ACh-mediated vascular responses is independent of lipid rafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app