Add like
Add dislike
Add to saved papers

Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams.

Microbial Ecology 2018 August 14
Extreme environments typically require costly adaptations for survival, an attribute that often translates to an elevated influence of habitat conditions on biotic communities. Microbes, primarily bacteria, are successful colonizers of extreme environments worldwide, yet in many instances, the interplay between harsh conditions, dispersal, and microbial biogeography remains unclear. This lack of clarity is particularly true for habitats where extreme temperature is not the overarching stressor, highlighting a need for studies that focus on the role other primary stressors (e.g., toxicants) play in shaping biogeographic patterns. In this study, we leveraged a naturally paired stream system in southern Mexico to explore how elevated hydrogen sulfide (H2 S) influences microbial diversity. We sequenced a portion of the 16S rRNA gene using bacterial primers for water sampled from three geographically proximate pairings of streams with high (> 20 μM) or low (~ 0 μM) H2 S concentrations. After exploring bacterial diversity within and among sites, we compared our results to a previous study of macroinvertebrates and fish for the same sites. By spanning multiple organismal groups, we were able to illuminate how H2 S may differentially affect biodiversity. The presence of elevated H2 S had no effect on overall bacterial diversity (p = 0.21), a large effect on community composition (25.8% of variation explained, p < 0.0001), and variable influence depending upon the group-whether fish, macroinvertebrates, or bacteria-being considered. For bacterial diversity, we recovered nine abundant operational taxonomic units (OTUs) that comprised a core H2 S-rich stream microbiome in the region. Many H2 S-associated OTUs were members of the Epsilonproteobacteria and Gammaproteobacteria, which both have been implicated in endosymbiotic relationships between sulfur-oxidizing bacteria and eukaryotes, suggesting the potential for symbioses that remain to be discovered in these habitats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app