Add like
Add dislike
Add to saved papers

Fabrication of cellulose nanoparticles through electrospraying.

IET Nanobiotechnology 2018 September
This study reports the fabrication of cellulose nanoparticles through electrospraying the solution of cellulose in N,N -dimethylacetamide/lithium chloride solvent as well as investigating the effect of electrospraying conditions and molecular weight on the average size of electrosprayed nanoparticles. Electrospraying of cellulose was carried out with the following range for each factor, namely concentration = 1-3 wt%, voltage = 15-23 kV, nozzle-collector distance = 10-25 cm, and feed rate = 0.03-0.0875 ml/h. The smallest nanoparticles had an average size of around 40 nm. Results showed that lowering the solution concentration and feed rate, as well as increasing the nozzle-collector distance and applied voltage led to a decrease in the average size of the electrosprayed cellulose nanoparticles. Fourier transform infrared analysis proved that no chemical change had occurred in the cellulose structure after the electrospraying process. According to X-ray diffraction (XRD) results, cellulose nanoparticles showed a lower degree of crystallinity in comparison with the raw cellulose powder. XRD results also proved the absence of LiCl salt in the electrosprayed nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app