Add like
Add dislike
Add to saved papers

Microscale and Nanoscale Electrophotonic Diagnostic Devices.

Detecting and identifying infectious agents and potential pathogens in complex environments and characterizing their mode of action is a critical need. Traditional diagnostics have targeted a single characteristic (e.g., spectral response, surface receptor, mass, intrinsic conductivity, etc.). However, advances in detection technologies have identified emerging approaches in which multiple modes of action are combined to obtain enhanced performance characteristics. Particularly appealing in this regard, electrophotonic devices capable of coupling light to electron translocation have experienced rapid recent growth and offer significant advantages for diagnostics. In this review, we explore three specific promising approaches that combine electronics and photonics: (1) assays based on closed bipolar electrochemistry coupling electron transfer to color or fluorescence, (2) sensors based on localized surface plasmon resonances, and (3) emerging nanophotonics approaches, such as those based on zero-mode waveguides and metamaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app