Add like
Add dislike
Add to saved papers

A linear epitope coupled to DsRed provides an affinity ligand for the capture of monoclonal antibodies.

Monoclonal antibodies (mAbs) dominate the market for biopharmaceutical proteins because they provide active and passive immunotherapies for many different diseases. However, for most mAbs, two expensive manufacturing platforms are required. These are mammalian cell cultures for upstream production and Protein A chromatography for product capture during downstream processing. Here we describe a novel affinity ligand based on the fluorescent protein DsRed as a carrier for the linear epitope ELDKWA, which can capture the HIV-neutralizing antibody 2F5. We produced the DsRed-2F5-Epitope (DFE) in transgenic tobacco (Nicotiana tabacum) plants and purified it using a combination of heat treatment and immobilized metal-ion affinity chromatography, resulting in a yield of 24 mg kg-1 at 90% purity. Using a design-of-experiments approach, we coupled up to 15 mg DFE per mL Sepharose. The resulting affinity resin was able to capture 2F5 from the clarified extract of N. benthamiana plants, achieving a purity of 97%, a recovery of >95% and an initial dynamic binding capacity at 10% product breakthrough of 4 mg mL-1 after a contact time of 2 min. The resin capacity declined to 15% of the starting value within 25 cycles when 1.25 M magnesium chloride was used for elution. We confirmed the binding activity of the 2F5 product by surface plasmon resonance spectroscopy. DFE is not yet optimized, and a cost analysis revealed that boosting DFE expression and increasing its capacity by fourfold will make the resin cost-competitive with some Protein A counterparts. The affinity resin can also be exploited to purify idiotype-specific mAbs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app