Add like
Add dislike
Add to saved papers

Diffusion of Ca 2+ from Small Boutons en Passant into the Axon Shapes AP-Evoked Ca 2+ Transients.

Biophysical Journal 2018 October 3
Not only the amplitude but also the time course of a presynaptic Ca2+ transient determine multiple aspects of synaptic transmission. In small bouton-type synapses, the mechanisms underlying the Ca2+ decay kinetics have not been fully investigated. Here, factors that shape an action-potential-evoked Ca2+ transient were quantitatively studied in synaptic boutons of neocortical layer 5 pyramidal neurons. Ca2+ transients were measured with different concentrations of fluorescent Ca2+ indicators and analyzed based on a single-compartment model. We found a small endogenous Ca2+ -binding ratio (7 ± 2) and a high activity of Ca2+ transporters (0.64 ± 0.03 ms-1 ), both of which enable rapid clearance of Ca2+ from the boutons. However, contrary to predictions of the single-compartment model, the decay time course of the measured Ca2+ transients was biexponential and became prolonged during repetitive stimulation. Measurements of [Ca2+ ]i along the adjoining axon, together with an experimentally constrained model, showed that the initial fast decay of the Ca2+ transients predominantly arose from the diffusion of Ca2+ from the boutons into the axon. Therefore, for small boutons en passant, factors like terminal volume, axon diameter, and the concentration of mobile Ca2+ -binding molecules are critical determinants of Ca2+ dynamics and thus Ca2+ -dependent processes, including short-term synaptic plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app