JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Brief overview of solubility methods: Recent trends in equilibrium solubility measurement and predictive models.

Solubility is a crucial physicochemical parameter affecting the whole process of drug discovery and development. Thus, understanding of the methods and concepts to measure and predict this propensity are of utmost importance for the pharmaceutical scientist. Despite their inherent limitations, kinetic solubility screening methods became routine assays by mimicking bioassay conditions and guiding the lead optimization process. In contrast, thermodynamic solubility methods show a clear evolution: miniaturized high throughput assays coupled to analytical techniques such as solid-state characterization, ultra performance liquid chromatography, or polychromatic turbidimetry, have been developed, thereby enabling a more complex physicochemical profiling at the early discovery stage. Solubility prediction still poses a significant challenge at the industrial level. Classification and critical evaluation of recent in silico models are provided. Discussion of experimental and computational methods: was based on relevant industrial references.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app