Add like
Add dislike
Add to saved papers

Buckling-Based Non-Linear Mechanical Sensor.

Sensors 2018 August 12
Mechanical sensors provide core keys for high-end research in quantitative understanding of fundamental phenomena and practical applications such as the force or pressure sensor, accelerometer and gyroscope. In particular, in situ sensitive and reliable detection is essential for measurements of the mechanical vibration and displacement forces in inertial sensors or seismometers. However, enhancing sensitivity, reducing response time and equipping sensors with a measurement capability of bidirectional mechanical perturbations remains challenging. Here, we demonstrate the buckling cantilever-based non-linear dynamic mechanical sensor which addresses intrinsic limitations associated with high sensitivity, reliability and durability. The cantilever is attached on to a high- Q tuning fork and initially buckled by being pressed against a solid surface while a flexural stress is applied. Then, buckling instability occurs near the bifurcation region due to lateral movement, which allows high-sensitive detection of the lateral and perpendicular surface acoustic waves with bandwidth-limited temporal response of less than 1 ms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app