Add like
Add dislike
Add to saved papers

Electrical activity of the human amygdala during all-night sleep and wakefulness.

OBJECTIVE: The aim of the present work was to characterize the dynamics of the human amygdala across the different sleep stages and during wakefulness.

METHODS: Simultaneous intracranial electrical recordings of the amygdala, hippocampus, and scalp electroencephalography during spontaneous sleep polysomnography in four patients suffering from epilepsy were analyzed.

RESULTS: Power spectrum of the amygdala revealed no differences between rapid eye movement (REM) and wakefulness for all frequencies except higher power at 9 Hz during wakefulness and some low Gamma frequencies. Conversely, higher power was observed in non-REM (NREM) sleep than wakefulness for Delta, Theta and Sigma.

CONCLUSIONS: Our results showed similar activity in the amygdala between wakefulness and REM sleep suggesting that the amygdala is as active in REM as during wakefulness. The higher power in Sigma frequencies during NREM sleep suggests that amygdala slow activity may play a significant role during NREM in concurrence with hippocampal activity.

SIGNIFICANCE: While studies have described the metabolic activity of the human amygdala during sleep, our results show the corresponding electrical pattern during the whole night, pointing out an increase of slow activity during NREM sleep that might be subjected to similar influences as other subcortical brain structures, such as the hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app