Add like
Add dislike
Add to saved papers

Spinal Serotonin 1A Receptor Contributes to the Analgesia of Acupoint Catgut Embedding by Inhibiting Phosphorylation of the N-Methyl-d-Aspartate Receptor GluN1 Subunit in Complete Freund's Adjuvant-Induced Inflammatory Pain in Rats.

Journal of Pain 2018 August 11
Acupoint catgut embedding (ACE) is a widely used traditional Chinese medicine method to manage various diseases, including chronic inflammatory pain. We sought to assess the possible analgesic effects of ACE in comparison with electroacupuncture (EA) and to study the analgesic mechanisms of ACE in a rat model of inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into the hind paw of rats. The von Frey, radiant heat, and gait analysis tests were performed to evaluate the analgesic effects of ACE and EA, and Western blot and immunohistochemistry assays were carried out to determine the molecular mechanisms of ACE. ACE treatments were administered every 4 days or every week with different acupoints (ipsilateral, contralateral, or bilateral ST36 and GB30 acupoints). The most effective ACE strategy for attenuating the nocifensive response induced by CFA injection was performing ACE once a week at ipsilateral ST36 in combination with GB30. EA treatment every other day at ipsilateral ST36 and GB30 showed comparable analgesic effects. ACE inhibited the increased activation of the GluN1 subunit of the N-methyl-d-aspartate receptor and the subsequent Ca2+ -dependent signals (CaMKII, ERK, and CREB) that take place in response to CFA. The effects of ACE were similar to intrathecal injection of vilazodone (a serotonin 1A receptor [5-HT1A R] agonist) and were blocked by WAY-100635 (a 5-HT1A R antagonist). In summary, we show that ACE attenuates CFA-induced inflammatory pain in rats by activating spinal 5-HT1A R and by inhibiting the phosphorylation of GluN1, thus, inhibiting the activation of Ca2+ -dependent signaling cascades. PERSPECTIVE: This article presents the novel evidence concerning the spinal 5-HT1A R activation-related molecular signaling of ACE analgesia in a rat model of CFA-induced inflammatory pain. This work may help clinicians to verify the effectiveness of ACE analgesia and to better understand the underlying mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app