Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A real time high-resolution melting PCR assay for detection and differentiation among sheep pox virus, goat pox virus, field and vaccine strains of lumpy skin disease virus.

In this paper, we report on the development of a real time high-resolution melting (HRM) PCR assay for detection and differentiation among sheep pox virus (SPPV), goat pox virus (GTPV), field isolates and vaccine strains of lumpy skin disease virus (LSDV) based on high-resolution melting curve analysis of their target PCR amplicons. A 111 bp region of LSDV010 ORF, which harbors unique genetic differences for each of these viral species, was selected as the PCR target in this study. During the validation of this assay using DNA from clinical isolates originated from naturally infected animals from the different geographic locations and reference strains, the obtained PCR amplicons demonstrated that the melting temperature picks were specific for each tested viral species, i.e., 74.56 ± 0.04 °C for field LSDV, 74.95 ± 0.08 °C for vaccine LSDV, 74.24 ± 0.06 °C for SPPV and 73.61 ± 0.04 °C for GTPV. The assessment of the assay sensitivity utilizing a LSDV field strain as a PCR template revealed the assay detection limit as low as 0.1 TCD50 lg/ml. Overall, this assay based on Rotor-Gene Q (QIAGEN) platform was shown to be reproducible across replicates and operators and can be recommended as an additional diagnostic tool to the currently available molecular assays for detection and differentiation of the genus Capripoxvirus species, including the differentiation of vaccine strains of LSDV from field isolates. The assay can be used for detection of these viruses in animal- and insect-derived field specimens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app