Add like
Add dislike
Add to saved papers

Epigenetic modification enhances the cytotoxicity of busulfan and4-hydroperoxycyclophosphamide in AML cells.

The combination of the DNA-alkylating agents busulfan (Bu) and cyclophosphamide is the most commonly used myeloablative pretransplantation conditioning therapy for myeloid leukemias. However, it is associated with significant nonrelapse mortality, which prohibits dose escalation to control relapse. We hypothesized that combining these two drugs with an epigenetic modifier would increase antileukemic efficacy without jeopardizing patient safety. A preclinical study was performed to determine the synergistic cytotoxicity of Bu, 4-hydroperoxycyclophosphamide (4HC), and the hypomethylating agent decitabine (DAC) in human acute myeloid leukemia (AML) cell lines. Exposure of KBM3/Bu2506 (P53-null) and OCI-AML3 (P53-wild-type) cells to Bu+4HC inhibited cell proliferation by ∼35-39%; addition of DAC increased the inhibition to ∼60-62%. The observed synergistic interactions correlated with DNA damage response activation, increased the production of reactive oxygen species, and decreased mitochondrial membrane potential, release of mitochondrial proapoptotic proteins into the cytoplasm, and induction of caspase-dependent programmed cell death. The Bu+4HC+DAC combination further caused chromatin trapping of DNMT1 with a concomitant increase in DNA damage. In contrast, FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD)-positive AML cell lines were not sensitized to Bu+4HC by inclusion of DAC; addition of the FLT3 kinase inhibitor sorafenib sensitized the FLT3-ITD-positive MV4-11 and MOLM13 cell lines to the triple drug combination by inhibiting the FLT3 signal transduction pathway. Our results therefore provide a rationale for the development of personalized conditioning therapy for patients with P53-mutated and FLT3-ITD-positive AML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app