Add like
Add dislike
Add to saved papers

Electrospun fibroin/polyurethane hybrid meshes: Manufacturing, characterization, and potentialities as substrates for haemodialysis arteriovenous grafts.

Several attempts made so far to combine silk fibroin and polyurethane, in order to prepare scaffolds encompassing the bioactivity of the former with the elasticity of the latter, suffer from critical drawbacks concerning industrial and clinical applicability (e.g., separation of phases upon processing, use of solvents unaddressed by the European Pharmacopoeia, and use of degradable polyurethanes). Overcoming these limitations, in this study, we report the successful blending of regenerated silk fibroin with a medical-grade, non-degradable polyurethane using formic acid and dichloromethane, and the manufacturing of hybrid, semi-degradable electrospun tubular meshes with different ratios of the two materials. Physicochemical analyses demonstrated the maintenance of the characteristic features of fibroin and polyurethane upon solubilization, blending, electrospinning, and postprocessing with ethanol or methanol. Envisioning their possible application as semidegradable substrates for haemodialysis arteriovenous grafts, tubular meshes were further characterized, showing submicrometric fibrous morphologies, tunable mechanical properties, permeability before and after puncture in the same order of magnitude as commercial grafts currently used in the clinics. Results demonstrate the potential of this material for the development of hybrid, new-generation vascular grafts with disruptive potential in the field of in situ tissue engineering. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app