Add like
Add dislike
Add to saved papers

Microscale Reversed-Phase Liquid Chromatography/Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Deep and Highly Sensitive Bottom-Up Proteomics: Identification of 7500 Proteins with Five Micrograms of an MCF7 Proteome Digest.

Analytical Chemistry 2018 September 5
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has been well recognized for bottom-up proteomics. It has approached 4000-8000 protein identifications (IDs) from a human cell line, mouse brains, or Xenopus embryos via coupling with liquid chromatography (LC) prefractionation. However, at least 500 μg of complex proteome digests were required for the LC/CZE-MS/MS studies. This requirement of a large amount of initial peptide material impedes the application of CZE-MS/MS for deep bottom-up proteomics of mass-limited samples. In this work, we coupled microscale reversed-phase LC (μRPLC)-based peptide prefractionation to dynamic pH-junction-based CZE-MS/MS for deep bottom-up proteomics of the MCF7 breast cancer cell proteome starting with only 5 μg of peptides. The dynamic pH-junction-based CZE enabled a 500 nL sample injection from as low as a 1.5 μL peptide sample, using up to 33% of the available peptide material for an analysis. Two kinds of μRPLC prefractionation were investigated, C18 ZipTip and nanoflow RPLC. C18 ZipTip/CZE-MS/MS identified 4453 proteins from 5 μg of the MCF7 proteome digest and showed good qualitative and quantitative reproducibility. Nanoflow RPLC/CZE-MS/MS produced over 7500 protein IDs and nearly 60 000 peptide IDs from the 5 μg of MCF7 proteome digest. The nanoflow RPLC/CZE-MS/MS platform reduced the required amount of complex proteome digests for LC/CZE-MS/MS-based deep bottom-up proteomics by 2 orders of magnitude. Our work provides the proteomics community with a powerful tool for deep and highly sensitive proteomics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app