Add like
Add dislike
Add to saved papers

Synchronized Ratiometric Codelivery of Metformin and Topotecan through Engineered Nanocarrier Facilitates In Vivo Synergistic Precision Levels at Tumor Site.

The combination of metabolic modulators with chemotherapy holds vast promise for effective inhibition of tumor progression and invasion. Herein, a ratiometric codelivery platform is developed for metformin (MET), a known metabolic modulator and topotecan (TPT), a chemotherapeutic drug, by engineering lipid bilayer-camouflaged mesoporous silica nanoparticles (LB-MSNs). In an attempt to deliver and maintain high tumor site concentrations of MET and TPT, a novel ion pairing-assisted loading procedure is developed using pamoic acid (PA) as an in situ trapping agent. PA, a hydrophobic counterion, increases the hydrophobicity of MET and TPT and facilitates MSNs with exceptionally high payload capacity (>40 and 32 wt%, respectively) and controlled release profile. Further, the synergy between MET and TPT determined by a modeling approach helps to afford synchronized delivery of both the drugs. Coloaded MET and TPT LB-MSNs present synergistic cytotoxicity against MDA-MB-231/4T1 cells and effectively promote apoptosis via mitochondrial membrane depolarization and cell cycle arrest. Extended pharmacokinetic profiles in preclinical models with fourfold to sevenfold longer circulation half-life and 7.5-100 times higher tumor site concentrations correspond to a significant increase in pharmacodynamic efficacy. Taken together, the developed codelivery approach effectively addresses the challenges in the chemotherapeutic efficacy of MET and TPT collectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app