Add like
Add dislike
Add to saved papers

Protective effect of a novel sigma-1 receptor agonist is associated with reduced endoplasmic reticulum stress in stroke male mice.

Sigma-1 receptor (Sig-1R) is expressed at endoplasmic reticulum (ER) membranes, where it regulates a variety of specific physiological functions. However, the profile and exact roles of ER stress-related molecules after Sig-1R agonist treatment in an in vivo stroke model are largely unknown. The aim of this study is to investigate the effect of a novel Sig-1R agonist, aniline derivative compound (Comp-AD), on the ER stress response following ischemic stroke. Male C57BL/6J mice received transient middle cerebral artery occlusion for 90 min, and were then treated with vehicle saline or Comp-AD at reperfusion. At 3 hr, 1 day, and 7 days after reperfusion, immunohis- tochemistry was performed for Sig-1R and ER stress-related proteins including phospho protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), phospho inositol requiring enzyme 1α (p- IRE1α), and activating transcription factor 6 (ATF6). Neurobehavioral analysis showed improved functional recovery at 1 day and 7 days after reperfusion, and the infarct volume was significantly smaller at 7 days (p < .05), in the Comp-AD group compared with the vehicle group. Comp-AD treatment upregulated Sig-1R immunoreactivity at 3 hr and 1 day (p < .05), and reduced p-PERK and p-IRE1α expression at 1 day (p < .05, respectively), in the peri-ischemic region compared with the vehicle group. Treatment with the novel Sig-1R agonist Comp-AD was neuroprotective after transient middle cerebral artery occlusion, and was associated with upregulation of Sig-1R and a reduction of ER stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app