Add like
Add dislike
Add to saved papers

Achieving ultrahigh carrier mobilities and opening the band gap in two-dimensional Si 2 BN.

Recently, a two-dimensional (2D) Si2BN monolayer material made of silicon, boron and nitrogen, was theoretically predicated and has attracted interest in the scientific community. Due to its 2D planar nature with high formation energy, Si2BN monolayers can be flexible and strong like graphene and also exhibit captivating properties like those of other 2D materials. Motivated by this fascinating graphene-like monolayer of Si2BN, we have investigated its structural and electronic properties based on first-principles calculations. The electronic band structure of pure Si2BN shows metallic behaviour. We have discovered that the band gap of Si2BN monolayer can be tuned to 102 meV by applying external electric fields and mechanical strain. The band gap opening occurs at 5% strain, where the bond angles between the nearest neighbours become nearly equal. The band gap opening occurs at a small external electric field of 0.4 V Å-1. More interestingly, at room temperature, the electron mobility of Si2BN is 4.73 × 105 cm2 V-1 s-1, which is much larger than that of graphene, while the hole mobility is 1.11 × 105 cm2 V-1 s-1, slightly smaller than the electron mobility. The ultrahigh carrier mobility of Si2BN may lead to many novel applications in high-performance electronic and optoelectronic devices. These theoretical results suggest that the Si2BN monolayer exhibits multiple effects that may significantly enhance the performance of Si2BN based electronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app