Add like
Add dislike
Add to saved papers

Exploration and application of phenomenological RBE models for proton therapy.

The relative biological effectiveness (RBE) of protons varies with multiple physical and biological factors. Phenomenological RBE models have been developed to include such factors in the estimation of a variable RBE, in contrast to the clinically applied constant RBE of 1.1. In this study, eleven published phenomenological RBE models and two plan-based models were explored and applied to simulated patient cases. All models were analysed with respect to the distribution and range of linear energy transfer (LET) and reference radiation fractionation sensitivity ((α/β) x ) of their respective experimental databases. Proton therapy plans for a spread-out Bragg peak in water and three patient cases (prostate adenocarcinoma, pituitary adenoma and thoracic sarcoma) were optimised using an RBE of 1.1 in the Eclipse™ treatment planning system prior to recalculation and modelling in the FLUKA Monte Carlo code. Model estimated dose-volume parameters for the planning target volumes (PTVs) and organs at risk (OAR) were compared. The experimental in vitro databases for the various models differed greatly in the range of (α/β) x values and dose-averaged LET (LETd ). There were significant variations between the model estimations, which arose from fundamental differences in the database definitions and model assumptions. The greatest variations appeared in organs with low (α/β) x and high LETd , e.g. biological doses given to late responding OARs located distal to the target in the treatment field. In general, the variation in maximum dose (D2% ) was larger than the variation in mean dose and other dose metrics, with D2% of the left optic nerve ((α/β) x   =  2.1 Gy) in the pituitary adenoma case showing the greatest discrepancies between models: 28-52 Gy(RBE), while D2% for RBE1.1 was 30 Gy(RBE). For all patient cases, the estimated mean RBE to the PTV was in the range 1.09-1.29 ((α/β) x   =  1.5/3.1/10.6 Gy). There were considerable variations between the estimations of RBE and RBE-weighted doses from the different models. These variations were a consequence of fundamental differences in experimental databases, model assumptions and regression techniques. The results from the implementation of RBE models in dose planning studies should be evaluated in light of these deviations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app