Add like
Add dislike
Add to saved papers

Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker).

BACKGROUND: The rice striped stem borer (SSB), Chilo suppressalis (Walker), which is one of the most economically important phytophagous pests, has developed resistance to multiple insecticides. The resistance of SSB against chlorantraniliprole has been investigated in detail. However, the mechanism of its metabolic resistance has rarely been studied.

RESULTS: A field population from Wuhu City, China was used to establish chlorantraniliprole resistant and susceptible strains (WHR and WHS) by laboratory continuous selection. Enzyme activities data suggested the potential involvement of cytochrome P450 monooxygenase in WHR. CYP6CV5, CYP9A68, CYP321F3, and CYP324A12 were significantly overexpressed in WHR (from 4.48 to 44.88-fold). These four P450 genes were expressed in the late developmental stages of WHR; however, they were almost absent during the egg stage. In addition, their expressions were much more sensitive to chlorantraniliprole induction in WHR than in WHS. Injection of individual and mixture dsRNAs reduced the expression of the four target genes (55.2-73.2% and 43.2-50.2%, respectively) and caused significant larvae mortality (55.1-65.1% and 88.2%, respectively).

CONCLUSION: Multiple overexpressed P450 genes were potentially associated with chlorantraniliprole resistance, as confirmed by the RNA interference (RNAi) assay. Our findings suggested that metabolic resistance to chlorantraniliprole might be mediated by P450s. © 2018 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app