Add like
Add dislike
Add to saved papers

Serum Mac-2 binding protein glycosylation isomer predicts the activation of hepatic stellate cells after liver transplantation.

BACKGROUND AND AIM: Serum Mac-2 binding protein glycosylation isomer (M2BPGi) is a novel fibrosis marker for various chronic liver diseases. We investigated the ability of M2BPGi to predict liver fibrosis in liver transplant (LT) recipients.

METHODS: A total of 116 liver biopsies were performed in 113 LT recipients. The serum level of M2BPGi was also measured on the same day. The median age at LT and liver biopsy was 1.1 and 11.8 years, respectively. Serum M2BPGi levels and liver fibrosis status using METAVIR fibrosis score were compared. Immunohistological evaluation by anti-α-smooth-muscle actin (αSMA) was performed, and the relationship between αSMA positive rate and serum M2BPGi levels was investigated.

RESULTS: The median M2BPGi level was 0.78 (range, 0.22-9.50), and 65, 29, 16, 5, and 1 patient(s) had METAVIR fibrosis scores of F0, F1, F2, F3, and F4, respectively. In patients with F0 fibrosis, median M2BPGi level was 0.69 and was significantly lower than in patients with F1 (median 0.99, P < 0.01), F2 (median 1.00, P = 0.01), and F3 fibrosis (median 1.53, P < 0.01). Area-under-the-curve analysis of the ability of M2BPGi level to predict liver fibrosis grade were > F1: 0.716, > F2: 0.720, and > F3: 0.900. Three patients with acute cellular rejection showed high levels of M2BPGi, which decreased after the treatment. A positive correlation existed between M2BPGi levels and αSMA positive rate (r2  = 0.715, P < 0.01).

CONCLUSION: Mac-2 binding protein glycosylation isomer is a novel liver fibrosis marker in LT recipients and is also increased in patients with acute liver injuries, especially acute cellular rejection, even when fibrosis is absent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app