Add like
Add dislike
Add to saved papers

Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax.

BACKGROUND: After herbivore attack, plants express inducible resistance-related traits activated by hormones, mainly jasmonic acid (JA) and salicylic acid (SA). Methyl jasmonate (MeJa) is a biologically active methyl ester of JA. Exogenous applications of JA, SA, and MeJa induce responses similar to herbivory by insects. In this study, rice, Oryza sativa L. (Poaceae), plants were treated with two concentrations of MeJa (2 and 5 mmol L-1 ), two concentrations of SA (8 and 16 mmol L-1 ) and herbivory to evaluate effects of elicitation and herbivory on resistance to the rice stink bug (RSB) Oebalus pugnax Fabricius, 1775 (Hemiptera: Pentatomidae), an injurious insect pest of rice in the United States.

RESULTS: Nymphs developing on plants treated with SA 16 mmol L-1 took longer to reach adulthood than nymphs developing on check plants. Grains per panicle were higher in plants treated with SA 16 mmol L-1 and MeJa in both concentrations than in check treatment. Plants treated with SA emitted five of six volatile compounds identified in equal or higher amounts than plants subjected to previous herbivory, particularly methyl salicylate, a known defense-related compound. Salicylic acid 16 mmol L-1 was the treatment that elicited the highest amount of all volatiles. In the field assay, plots treated with SA 16 mmol L-1 showed lower spikelet sterility and a tendency for fewer bugs to be found in plots.

CONCLUSION: Rice plants possess defense mechanisms that can be elicited using hormones as elicitors, mainly SA 16 mmol L-1 , to induce resistance against RSB. © 2018 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app