Add like
Add dislike
Add to saved papers

Aqueous sodium hydroxide (NaOH) solutions at high pressure and temperature: insights from in situ Raman spectroscopy and ab initio molecular dynamics simulations.

Hydrothermal diamond anvil cell experiments in combination with Raman spectroscopy and first principles molecular dynamics simulations were performed to investigate the structure and dynamics of aqueous NaOH solutions for temperatures up to 700 °C, pressures up to 850 MPa and two different solute concentrations. The significant changes observed in the O-H stretching region of the Raman spectra between ambient and supercritical conditions are explained by both dynamic effects and structural differences. Especially important are a Grotthuss-like proton transport process and the decreasing network connectivity of the water molecules with increasing temperature. The observed transfer of Raman intensity towards lower wavenumbers by the proton transfer affects a wide range of frequencies and must be considered in the interpretation of Raman spectra of highly basic solutions. We suggest a deconvolution of the spectra using a model with four Gaussian functions, which are assigned to the molecular H2O and OH- vibrations, and one asymmetric exponentially modified Gaussian (EMG) function, which is assigned to [HO(H2O)n]- vibrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app