Add like
Add dislike
Add to saved papers

Interfacial waveforms in chiral lattices with gyroscopic spinners.

We demonstrate a new method of achieving topologically protected states in an elastic hexagonal system of trusses by attaching gyroscopic spinners, which bring chirality to the system. Dispersive features of this medium are investigated in detail, and it is shown that one can manipulate the locations of stop-bands and Dirac points by tuning the parameters of the spinners. We show that, in the proximity of such points, uni-directional interfacial waveforms can be created in an inhomogeneous lattice and the direction of such waveforms can be controlled. The effect of inserting additional soft internal links into the system, which is thus transformed into a heterogeneous triangular lattice, is also investigated, as the hexagonal lattice represents the limit case of the heterogeneous triangular lattice with soft links. This work introduces a new perspective in the design of periodic media possessing non-trivial topological features.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app