Add like
Add dislike
Add to saved papers

Modified binodal model describes phase separation in aqueous two-phase systems in terms of the effects of phase-forming components on the solvent features of water.

The binodal model pioneered by Guan et al. [Y. Guan, T. H. Lilley, T. E. Treffry, J. Chem. Soc. Faraday Trans., 89 (1993) 4283-4298] remains the most successful in regard to the quantitative description of phase diagrams among various theoretical models proposed to describe phase separation in aqueous mixtures of polymers. This is a semi-empirical model based on the assumption that any point on the binodal line may be viewed as a saturated solution of the phase-forming compound-1 in the solution of the phase-forming compound-2. Although this model is originally based on the excluded volume concept, we suggest that the solubility of the compound-1 in solutions of compound-2 may depend on the solvent properties of water in solutions of compound-2. The binodal model described in these terms was very successfully applied to the phase diagrams of aqueous two-phase systems formed by different pairs of polymers (dextran, Ficoll, poly(ethylene glycol)-8000, and Ucon). Phase diagram of a new aqueous two-phase system formed by trimethylamine N-oxide (TMAO) and polypopylene glycol-400 and previously reported phase diagram for system formed by TMAO and poly(ethylene glycol)-600 were also described by this model quite well. It was found that the modified binodal model is also applicable to single polymer-salt and polymer-ionic liquid aqueous two-phase systems. The most important conclusion of our study is that the effects of different compounds (polymers, salts, ionic liquids) on the solvent features of water in their aqueous solutions cause changes in the water structure, resulting in phase separation in the mixtures of these compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app