Add like
Add dislike
Add to saved papers

Understand the acquired resistance of RTK inhibitors by computational receptor tyrosine kinases network.

Receptor Tyrosine Kinase inhibitors are the most popular anti-cancer drug types. But the resistance is the major challenge. Our study on the network with 1334 proteins and their 2623 interactions which retrieved from 52 RTKs indicated that most RTKs proteins were the key controllers of the protein-protein network. Direct or indirect interactions with RTKs (shortest path of 2) were often associated with resistance to RTKs inhibitors in the literature. The results based on the KEGG pathway analysis demonstrated the Rap1 signal pathway would also contribute to the resistance of RTKs inhibitor as well as the known Ras pathway and PI3K/Akt pathway. The pathways can crosstalk within and between complex signals transduction networks, then activate the upstream or downstream pathway, and/or activate the other oncogenes, which lead to the acquired resistance. Our results gave a systematically global view to understand the drug resistance and provided a clue to how to combine the different targets or pathways for synergy of targeted RTKs inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app