Add like
Add dislike
Add to saved papers

Tailoring the subchondral bone phase of a multi-layered osteochondral construct to support bone healing and a cartilage analog.

Acta Biomaterialia 2018 September 16
Focal chondral and osteochondral defects create significant pain and disability for working-aged adults. Current osteochondral repair grafts are limited in availability and often fail due to insufficient osseous support and integration. Thus, a need exists for an off-the-shelf osteochondral construct with the propensity to overcome these shortcomings. Herein, a scalable process was used to develop a multi-layered osteochondral graft with a subchondral bone (ScB) phase tailored to support bone healing and integration. Multiple ScB formulations and fabrication techniques were screened via degradation, bioactivity, and unconfined compression testing. An optimized ScB construct was selected and its cytotoxicity assessed. Additionally, a cartilage analog was secured to the optimized ScB construct via a calcified cartilage layer, and the resulting osteochondral construct was characterized via interfacial shear and dynamic mechanical testing. The optimized ScB construct did not significantly alter local pH during degradation, exhibited measurable bioactivity in vitro, and had significantly greater compressive mechanical strength compared to other constructs. The attachment strength of the cartilage analog was significantly greater by an increase in compressive dynamic mechanical properties. Furthermore, this ScB construct was found to be cytocompatible with human bone marrow-derived mesenchymal stromal cells. Taken together, this optimized ScB material forms the robust foundation of a novel, off-the-shelf osteochondral construct to be used in defect repair.

STATEMENT OF SIGNIFICANCE: The quality of life for millions of individuals worldwide is detrimentally affected by focal chondral or osteochondral defects. Current off-the-shelf biomaterial constructs often fail to repair these defects due to insufficient osseous support and integration. Herein, we used a scalable process to fabricate and optimize a novel boney construct. This optimized boney construct demonstrated biochemical, physical, and mechanical properties tailored to promote bone healing. Furthermore, a novel cartilage analog was successfully attached to the boney construct, forming a multi-layered osteochondral construct.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app