Add like
Add dislike
Add to saved papers

Spectroscopic techniques investigation on the interaction of glucoamylase with 1‑deoxynojirimycin: Mechanistic and conformational study.

1‑Deoxynojirimycin (DNJ), a representative polyhydroxylated alkaloids, is widely used in the field of antidiabetic, antitumor, and anti-HIV. The present study tried to clarify the interaction mechanism of DNJ with glucoamylase by multi-spectroscopic techniques, dynamic light scattering in combination with molecular modeling strategies from biophysics point of view. Fluorescence and UV-vis data indicated that fluorescence quenching mechanism of glucoamylase and DNJ was a dynamic manner. The association constant, binding site and thermodynamic parameters were also obtained from fluorescence spectrum at different temperatures. Synchronous fluorescence, circular dichroism and dynamic light scattering methods demonstrated that their interaction induced microenvironment changes around tryptophan residue and protein conformational alteration. The main driving force was hydrophobic interaction and hydrogen bonding. In addition, molecular docking study indicated that 1‑deoxynojirimycin could bind in the catalytic domain of glucoamylase and interact with amino acid residues Arg78, Asp79, Glu203 and Glu424 by forming hydrogen bonds. Molecular dynamics simulation demonstrated that profiles of atomic fluctuation remained the rigidity of ligand binding site. This study elucidated the detailed interaction mechanism of DNJ with glucoamylase, which will be helpful for pharmaceutical companies to design new α‑glucosidase inhibitor drugs based on polyhydroxylated alkaloids compound like DNJ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app