Add like
Add dislike
Add to saved papers

Cognitive control network dysconnectivity and response to antipsychotic treatment in schizophrenia.

To better understand cognitive control impairment in schizophrenia, it is vital to determine the extent of dysfunctional connectivity in the associated fronto-striatal brain network, with a focus on the connections with the anterior cingulate cortex (ACC), prior to the potential confounding effect of medication. It is also essential to determine the effects following antipsychotic medication and the relationship of those effects on psychosis improvement. Twenty-two patients with schizophrenia, initially unmedicated and after a 6-week course of risperidone, and 20 matched healthy controls (HC) performed a fMRI task twice, six weeks apart. We investigated group and longitudinal differences in ACC-related functional connectivity during performance of a Stroop color task as well as connectivity patterns associated with improvement in psychosis symptoms. Unmedicated patients with schizophrenia showed greater functional connectivity between ACC and bilateral caudate and midbrain and lower connectivity with left putamen compared to healthy controls. At baseline, greater functional connectivity between ACC and bilateral putamen predicted subsequent better treatment response. Change in functional connectivity between ACC and left putamen positively correlated with better treatment response. These results suggest that patterns of functional connectivity in fronto-striatal networks can be utilized to predict potential response to antipsychotic medication. Prior to treatment, brain function may be structured with a predisposition that favors or not treatment response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app