Add like
Add dislike
Add to saved papers

Dual-opposite end multiple injection method applied to sequential determination of Na + , K + , Ca +2 , Mg +2 ions and free and total glycerol in biodiesel by capillary zone electrophoresis.

A novel method for the sequential determination of sodium, potassium, calcium, and magnesium and free and total glycerol in biodiesel by capillary zone electrophoresis is proposed herein. The inorganic cations were separated along an effective length of 43.5 cm. The samples to quantify the free and total glycerol were injected into the opposite capillary end, close to the detection window, with an effective length of 8.5 cm. It was possible to achieve the separation of six analytes within 3 min. The quantification limits for the cations and glycerol ranged from 0.071 to 0.5 mg kg-1 to and 0.0017% to 0.017% w/w, respectively. Despite the complexity of the injection steps, the values for the instrumental, intraday and interday precision were better than 2.13, 4.49 and 5.68% (RSD), respectively, for the cations and the free and total glycerol. The method has good accuracy and specificity, which was statistically confirmed through an interlaboratory assay, where the method was compared with official methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app