Add like
Add dislike
Add to saved papers

Modulation of P2X7 purinergic receptor activity by extracellular Zn 2+ in cultured mouse hippocampal astroglia.

Cell Calcium 2018 July 31
The P2X7R protein, a P2 type purinergic receptor functioning as a non-selective cation channel, is expressed in different cell types of the central nervous system in several regions of the brain. The activation of the P2X7R protein by ATP modulates excitatory neurotransmission and contributes to microglial activation, apoptosis and neuron-glia communication. Zinc is an essential micronutrient that is highly concentrated in the synaptic vesicles of glutamatergic hippocampal neurons where free zinc ions released into the synaptic cleft alter glutamatergic signal transmission. Changes in both P2X7R-mediated signaling and brain zinc homeostasis have been implicated in the pathogenesis of mood disorders. Here, we tested the hypothesis that extracellular zinc regulates P2X7R activity in the hippocampus. We observed that P2X7R is expressed in both neurons and glial cells in primary mouse hippocampal neuron-glia culture. Propidium iodide (PI) uptake through large pores formed by pannexins and P2X7R was dose-dependently inhibited by extracellular zinc ions. Calcium influx mediated by P2X7R in glial cells was also reduced by free zinc ions. Interestingly, no calcium influx was detected in response to ATP or 3'-O-(4-Benzoyl) benzoyl ATP (BzATP) in neurons despite the expression of P2X7R at the plasma membrane. Our results show that free zinc ions can modulate hippocampal glial purinergic signaling, and changes in the activity of P2X7R may contribute to the development of depression-like behaviors associated with zinc deficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app