Add like
Add dislike
Add to saved papers

Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling.

The cellular toxicity response of human airway epithelial cells (A549) to tetrabromobisphenol (TBBPA) was assessed in vitro. Cell viability, levels of intracellular reactive oxygen species (ROS), lipid peroxidation (MDA), and caspase-3 activity were determined after A549 treated with varying concentrations of TBBPA. A comparative proteomic analysis was performed in cells treated with different concentrations of TBBPA (0, 10, and 40 μg/mL). Two-way anova analysis showed that cell viability was significantly decreased after treatment by TBBPA with a concentration of 16 μg/mL for 48 hr, however, the caspase-3 activities, ROS generation, and MDA content increased. Ultrastructural observation revealed that the cell was morphological damaged after exposure to 64 μg/mL TBBPA, with mitochondria seriously injured and the smooth endoplasmic reticulum dilated. There was a good correlation between ROS generation and mitochondrial dysfunction. Seventeen differentially expressed proteins involved in various biological processes were identified. These findings provide a basis for understanding the mechanisms of cell dysfunction and perturbation of antioxidant status induced by additive flame retardant on airway epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app