Add like
Add dislike
Add to saved papers

A Convenient and Effective Method to Deposit Low-Defect-Density nc-Si:H Thin Film by PECVD.

Hydrogenated nanocrystalline silicon (nc-Si:H) thin film has received a great deal of attention as a promising material for flat panel display transistors, solar cells, etc. However, the multiphase structure of nc-Si:H leads to many defects. One of the major challenges is how to reduce the defects conveniently. In this work, we developed a simple and effective method to deposit low-defect-density nc-Si:H thin film. This method is simply by tuning the deposition pressure in a high-pressure range in plasma-enhanced chemical vapor deposition (PECVD) process. Microstructures of the nc-Si:H were characterized by Raman, AFM, and SEM. Furthermore, we focused on the defect density which was the key characteristic for photovoltaic materials and achieved the defect density of 3.766 × 1016  cm-3 . This defect density is lower than that of previous studies on the fabrication of low-defect-density nc-Si:H by other complex methods in PECVD process. The minority carrier lifetime of nc-Si:H is thus greatly improved. Moreover, we demonstrated the mechanism about the effect of deposition pressure on the ion bombardment and proved that the defect density is the key characteristic for nc-Si:H photovoltaic material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app