Add like
Add dislike
Add to saved papers

Dye-functionalized Sol-gel Matrix on Carbon Nanotubes for Refreshable and Flexible Gas Sensors.

Scientific Reports 2018 August 11
We report a colorimetric dye-functionalized sol-gel matrix on carbon nanotubes for use as a refreshable and flexible gas sensor with humidity calibration. Here, we fabricated gas sensors by functionalizing dye molecules on the top of carbon nanotube networks via a sol-gel method. Using hybrid gas sensors with different dye molecules, we could selectively detect various hazardous gases, such as NH3 , Cl2 and SO2 gases, via optical and electrical signals. The sensors exhibited rather large conductance changes of more than 50% following exposure to gas species with concentrations even under the permissible exposure limit. Significantly, we could refresh used gas sensors by simply exposing them to fresh N2 gas without any heat treatment. Additionally, our sensors can be bent to form versatile practical sensor devices, such as tube-shape sensors for ventilation tubes. This work shows a simple but powerful method for building refreshable and selective gas sensors for versatile industrial and academic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app