Add like
Add dislike
Add to saved papers

Alkaline ceramidase 3 promotes growth of hepatocellular carcinoma cells via regulating S1P/S1PR2/PI3K/AKT signaling.

OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the cancer types with poor prognosis. To effectively treat HCC, new molecular targets and therapeutic approaches must be identified. Alkaline ceramidase 3 (Acer3) hydrolyzed long-chain unsaturated ceramide to produce free fatty acids and sphingosine. However, whether and how Acer3 modulates progression of HCC remains largely unknown.

METHODS: Acer3 mRNA levels in different types of human HCC samples or normal tissues were determined from Gene Expression across Normal and Tumor tissue (GENT) database. The expression level of Acer3 in human HCC cell lines were examined by western blot. Overall survival and disease-free survival of HCC patients were determined by Kaplan-Meier analysis. Effects of Acer3 knockdown by lentivirus infection were evaluated on cell growth and apoptosis. The mechanisms involved in HCC cells growth and apoptosis were analyzed by western blot.

RESULTS: In silico analysis of TCGA databases of HCC patients showed that the expression of Acer3 significantly inversely correlates with the overall and disease-free survival of HCC patients. Knockdown expression of Acer3 resulted in decreased cell growth and increased apoptosis. Notably, inhibition of Acer3 resulted in intracellular exhaustion of Sphingosine-1-phosphate (S1P) and inhibited activation of S1PR2/PI3K/AKT signaling. Finally, knockdown of Acer3 induced up-regulation of Bax and down-regulation of Bcl-2.

CONCLUSIONS: Our study suggests that Acer3 contributes to HCC propagation, and suggests that inhibition of Acer3 may be novel strategy for treating human HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app