Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice.

Redox Biology 2018 October
We reported previously that nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT) play critical roles in preventing intermittent hypoxia (IH)-induced cardiomyopathy. In addition, positive feedback regulation between Nrf2 and MT is required for the efficient compensative responses of the heart to IH. As an activator of Nrf2, sulforaphane (SFN) has attracted attention as a potential protective agent against cardiovascular disease. Here, we investigated whether SFN can up-regulate cardiac Nrf2 expression and function, as well as MT expression, to prevent IH-induced cardiomyopathy, and if so, whether Nrf2 and MT are indispensable for this preventive effect. Nrf2-knock-out (Nrf2-KO) or MT-KO mice and their wild-type (WT) equivalents were exposed to IH for 4 weeks with or without SFN treatment. SFN almost completely prevented IH-induced cardiomyopathy in WT mice, and this preventive effect was abolished in Nrf2-KO mice but retained in MT-KO mice. In IH-exposed WT mice, SFN induced significant increases in the expression levels of Nrf2 and its downstream antioxidant target genes, as well as those of MT, but these effects were not seen in IH-exposed Nrf2-KO mice. By contrast, KO of MT did not affect the ability of SFN to up-regulate the expression of Nrf2 and its downstream antioxidant targets. These results suggest that SFN-induced MT expression is Nrf2-dependent, and SFN prevents IH-induced cardiomyopathy in a Nrf2-dependent manner, for which MT is dispensable. This study provides important information that is relevant to the potential use of SFN to prevent IH-induced cardiomyopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app