Add like
Add dislike
Add to saved papers

Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles.

The effect of surfactant and dopant on the properties of zinc oxide nanoparticles were studied by preparing polyethylene glycol (PEG) capped ZnO and tungsten doped PEG capped ZnO nanoparticles via the electrochemical method. These nanoparticles were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet Diffuse Reflection Spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM) and Electron Dispersive Analysis of X Rays (EDAX). The photocatalytic degradation of malachite green dye using these nanoparticles was studied under visible light. The effects of various reaction parameters like dye concentration, catalyst concentration, pH and time were studied to optimize the photodegradation reaction. Reusability of these nanoparticles was studied and no significant change was observed in the degradation efficiency of PEG capped ZnO till the fourth cycle, while there was a gradual decrease in the degradation efficiency of tungsten doped PEG capped ZnO. Langmuir- Hinshelwood kinetic model well describes the photodegradation capacity and the degradation of malachite green follows pseudo-first order kinetics.Photocatalytic studies reveal that PEG capping increases the degradation properties of ZnO while tungsten doping decreases the extent of PEG capping and has a detrimental effect on the degradation properties of ZnO. The prepared nanoparticles exhibit significant antibacterial properties against gram-positive Bacillus cereus and gram-negative Escherichia coli bacterial strains by agar well diffusion method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app