Add like
Add dislike
Add to saved papers

Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis.

Metabolic Engineering 2018 August 9
Bacillus subtilis is extensively applied as a microorganism for the high-level production of heterologous proteins. Traditional strategies for increasing the productivity of this microbial cell factory generally focused on the targeted modification of rate-limiting components or steps. However, the longstanding problems of limited productivity of the expression host, metabolic burden and non-optimal nutrient intake, have not yet been completely solved to achieve significant production-strain improvements. To tackle this problem, we systematically rewired the regulatory networks of the global nitrogen and carbon metabolism by random mutagenesis of the pleiotropic transcriptional regulators CodY and CcpA, to allow for optimal nutrient intake, translating into significantly higher heterologous protein production yields. Using a β-galactosidase expression and screening system and consecutive rounds of mutagenesis, we identified mutant variants of both CodY and CcpA that in conjunction increased production levels up to 290%. RNA-Seq and electrophoretic mobility shift assay (EMSA) showed that amino acid substitutions within the DNA-binding domains altered the overall binding specificity and regulatory activity of the two transcription factors. Consequently, fine-tuning of the central metabolic pathways allowed for enhanced protein production levels. The improved cell factory capacity was further demonstrated by the successfully increased overexpression of GFP, xylanase and a peptidase in the double mutant strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app