Add like
Add dislike
Add to saved papers

Dynamics of a magnetically rotated micro swimmer inspired by paramecium metachronal wave.

In the past few years, a significant body of research has been devoted to designing magnetic micron scale robotic systems for minimally invasive medicine. The motion of different microorganisms is the nature's solution for efficient propulsion of these swimmers. So far, there has been a considerable effort in designing micro swimmers based on the propulsion of bacteria while the motion of numerous other microorganisms has not been a source of inspiration for designing micro swimmers yet. Inspired by propulsion of Paramecium which is a ciliate microorganism, a novel micro swimmer is proposed in this article which is capable of cargo transport. This novel swimmer is composed of multiple equally spaced rigid loxodromic rods spanning the surface of a sphere which can carry a cargo placed inside it. The propulsion of this swimmer is influenced by the geometry of the swimmer (diameter, number of rods, cargo size), therefore, CFD simulations have been performed to investigate it. Finally, the dynamics of this swimmer is investigated analytically which sheds light into the complex dynamics of a swimmer with this geometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app